

RIDGE WAVEGUIDE LASER with AR-COATING

GaAs Semiconductor Laser Diode

Tunable Fabry-Perot Laser for External Cavity Operation



28.11.2011

page 1 from 4

#### **General Product Information**

| Product                                          | Application  |
|--------------------------------------------------|--------------|
| tunable 920 nm Fabry-Perot Laser                 | Spectroscopy |
| for use in an External Cavity Diode Laser (ECDL) |              |
| sealed SOT Housing                               |              |
| Monitor Diode                                    |              |
|                                                  |              |



#### **Absolute Maximum Ratings**

|                                 | Symbol           | Unit | min | typ | max |
|---------------------------------|------------------|------|-----|-----|-----|
| Storage Temperature             | $T_S$            | °C   | -20 |     | 85  |
| Operational Temperature at Case | $T_{C}$          | °C   | -20 |     | 50  |
| Forward Current                 | I <sub>F</sub>   | mA   |     |     | 180 |
| Reverse Voltage                 | $V_R$            | V    |     |     | 0   |
| Output Power (extracavity)      | P <sub>opt</sub> | mW   |     |     | 50  |

Stress in excess of the Absolute Maximum Ratings can cause permanent damage to the device.

#### **Recommended Operational Conditions**

|                                 | Symbol         | Unit | min | typ | max |
|---------------------------------|----------------|------|-----|-----|-----|
| Operational Temperature at Case | T <sub>C</sub> | °C   | 15  |     | 40  |
| Forward Current                 | $I_{F}$        | mA   |     |     | 160 |

| Measurement Conditions / Comments |  |
|-----------------------------------|--|
|                                   |  |
|                                   |  |

#### Characteristics at $T_{LD}$ = 25 °C at Begin Of Life

| Parameter                                    | Symbol                        | Unit              | min | typ                | max    |
|----------------------------------------------|-------------------------------|-------------------|-----|--------------------|--------|
| Center Wavelength                            | $\lambda_{C}$                 | nm                |     | 920                |        |
| Tuning Range                                 | $\Delta \lambda_{\text{tun}}$ | nm                | 880 |                    | 930    |
| Output Power (extracavity)                   | $P_{opt}$                     | mW                |     | 15                 |        |
| Cavity Length                                | L                             | μm                |     | 1500               |        |
| Reflectivity at Front Facet                  | $R_{\mathrm{ff}}$             |                   |     | 3·10 <sup>-4</sup> | 1.10-3 |
| Polarization                                 |                               |                   |     | TE                 |        |
| Spatial Mode (transversal) TEM <sub>00</sub> |                               |                   |     |                    |        |
| Spectral Mode (longitudinal)                 |                               | Single/Multi Mode |     |                    |        |

#### Measurement Conditions / Comments

Tuning range and output power are estimated from the gain profile of the laser. The actual achieved wavelength and power are strongly influenced by the external cavity. Therefore eagleyard Photonics will give no guarantee on these parameters.

E field parallel to Pin 2 - Pin 3 - plane Fundamental Mode depending on operating conditions



info@amstechnologies.com www.amstechnologies-webshop.com





Revision 0.50

28.11.2011

age 2 from 4

## RIDGE WAVEGUIDE LASER with AR-COATING

GaAs Semiconductor Laser Diode

Tunable Fabry-Perot Laser for External Cavity Operation



#### Monitor Diode

| Symbol                              | Unit                                | min                                         | typ                                           | max                                           |
|-------------------------------------|-------------------------------------|---------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| I <sub>mon</sub> / P <sub>opt</sub> | μA / mW                             | 2                                           |                                               | 40                                            |
| $U_{R\ MD}$                         | V                                   | 3                                           |                                               | 5                                             |
|                                     | I <sub>mon</sub> / P <sub>opt</sub> | I <sub>mon</sub> / P <sub>opt</sub> μA / mW | I <sub>mon</sub> / P <sub>opt</sub> μA / mW 2 | I <sub>mon</sub> / P <sub>opt</sub> μA / mW 2 |

| Measurement Conditions / Comments           |
|---------------------------------------------|
| $U_R = 5 \text{ V}$ ; $P_{opt}$ intracavity |
|                                             |

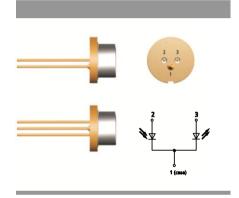


RIDGE WAVEGUIDE LASER with AR-COATING

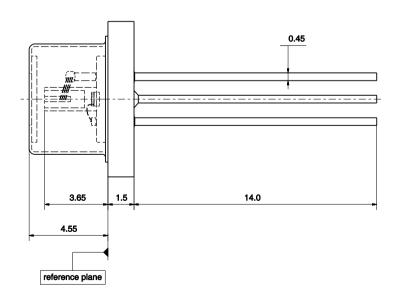
GaAs Semiconductor Laser Diode

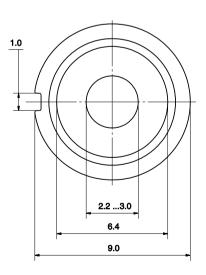
Tunable Fabry-Perot Laser for External Cavity Operation




#### Package Dimensions

| Parameter                       | Symbol           | Unit | min  | typ  | max  |
|---------------------------------|------------------|------|------|------|------|
| Height of Emission Plane        | $d_{EP}$         | mm   | 3.50 | 3.65 | 3.70 |
| Excentricity of Emission Center | R                | mm   |      |      | 0.12 |
| Pin Length                      | I <sub>PIN</sub> | mm   |      | 14   |      |


| Measurement Conditions / Comments             |
|-----------------------------------------------|
| reference plane: top side of TO header        |
| reference: center of outer diameter of header |
|                                               |


#### Package Pinout

| Ground          | 1 |
|-----------------|---|
| Photo Diode (+) | 2 |
| Laser (+)       | 3 |



#### Package Drawings



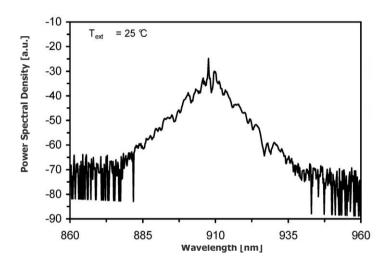




Revision 0.50

28.11.2011

page 4 from 4


#### RIDGE WAVEGUIDE LASER with AR-COATING

GaAs Semiconductor Laser Diode Tunable Fabry-Perot Laser for External Cavity Operation



#### Typical Measurement Results

Emission Spectrum measured without external feedback



Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

#### Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The RWE diode type is known to be sensitive against thermal stress. It should not be operated without appropriate optical feedback from an external cavity. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

















GaAs Semiconductor Laser Diode Tunable Fabry-Perot Laser for External Cavity Operation



PRELIMINARY SPECIFICATION

#### **RWE Laser**

## EYP-RWE-0980-08020-1500-SOT02-0000

| General Product Information                                         |              |
|---------------------------------------------------------------------|--------------|
| Product                                                             | Application  |
| tunable 980 nm Fabry-Perot Laser                                    | Spectroscopy |
| for use in an External Cavity Diode Laser (ECDL) sealed SOT Housing |              |
| Monitor Diode                                                       |              |
|                                                                     |              |



#### **Absolute Maximum Ratings**

|                                 | Symbol         | Unit | min | typ | max |
|---------------------------------|----------------|------|-----|-----|-----|
| Storage Temperature             | T <sub>S</sub> | °C   | -20 |     | 85  |
| Operational Temperature at Case | $T_{C}$        | °C   | -20 |     | 50  |
| Forward Current                 | I <sub>F</sub> | mA   |     |     | 120 |
| Reverse Voltage                 | $V_R$          | V    |     |     | 0   |
|                                 |                |      |     |     |     |

Stress in excess of the Absolute Maximum Ratings can cause permanent damage to the device.

Operation at the Absolute Maximum Rating for extended periods of time can adversely affect the device realibility and may lead to reduced operational life.

| Recommend |  |  |
|-----------|--|--|
|           |  |  |

|                                 | Symbol         | Unit | min | typ | max |
|---------------------------------|----------------|------|-----|-----|-----|
| Operational Temperature at case | T <sub>C</sub> | °C   | 15  |     | 40  |
| Forward Current                 | l <sub>F</sub> | mA   |     |     | 100 |

| Characterist | ics at T <sub>amb</sub> 25 | °C at Begin Of Life |
|--------------|----------------------------|---------------------|
|              |                            |                     |

| Parameter                   | Symbol                        | Unit | min | typ                | max    |
|-----------------------------|-------------------------------|------|-----|--------------------|--------|
| Center Wavelength           | $\lambda_{C}$                 | nm   |     | 980                |        |
| Tuning Range                | $\Delta \lambda_{\text{tun}}$ | nm   | 900 |                    | 1000   |
| Output Power (extracavity)  | $P_{\text{opt}}$              | mW   |     | 50                 |        |
| Cavity Length               | L                             | μm   |     | 1500               |        |
| Reflectivity at Front Facet | $R_{ff}$                      |      |     | 3·10 <sup>-4</sup> | 1.10-3 |
| Polarization                |                               |      |     | TE                 |        |

#### Measurement Conditions / Comments

Tuning range and output power are estimated from the gain profile of the laser. The actual achieved wavelength and power are strongly influenced by the external cavity. Therefore eagleyard Photonics will give no guarantee on these parameters.

Polarization parallel to Pin 2 - Pin 3 -plane





GaAs Semiconductor Laser Diode Tunable Fabry-Perot Laser for External Cavity Operation



PRELIMINARY SPECIFICATION

#### **RWE Laser**

## EYP-RWE-0980-08020-1500-SOT02-0000

| Monitor Diode                 |                                        |         |     |     |     |
|-------------------------------|----------------------------------------|---------|-----|-----|-----|
| Parameter                     | Symbol                                 | Unit    | min | typ | max |
| Monitor Detector Responsivity | I <sub>mon</sub> / P <sub>opt ic</sub> | μA / mW | 1   |     | 10  |
| Reverse Voltage Monitor Diode | $U_{R\ MD}$                            | V       | 3   |     | 5   |
|                               |                                        |         |     |     |     |

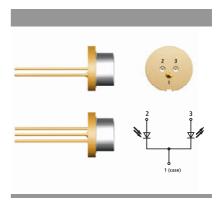
| Measurement Conditions / Comments                               |
|-----------------------------------------------------------------|
| $U_{R MD} = 5 V$ , $P_{opt ic}$ : intracavity power of the ECDL |
|                                                                 |



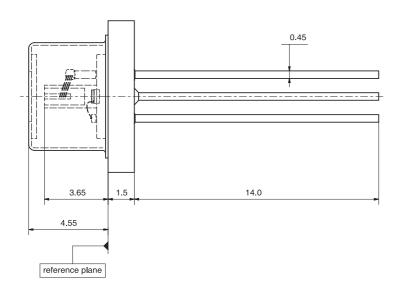
GaAs Semiconductor Laser Diode Tunable Fabry-Perot Laser for External Cavity Operation

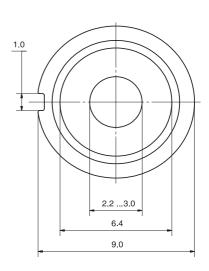


PRELIMINARY SPECIFICATION


#### **RWE Laser**

## EYP-RWE-0980-08020-1500-SOT02-0000


| Package Dimensions |                 |      |      |      |      |
|--------------------|-----------------|------|------|------|------|
|                    | Symbol          | Unit | min  | typ  | max  |
| Emission Plane     | d <sub>EP</sub> | mm   | 3.50 | 3.65 | 3.70 |
| Housing Diameter   | d               | mm   |      | 9.0  |      |
| Pin Length         | I               | mm   |      | 14.0 |      |


| reference plane: top side of TO header |
|----------------------------------------|
|                                        |
|                                        |

| Package Pinout  | M-Type |  |
|-----------------|--------|--|
|                 |        |  |
| Ground          | 1      |  |
| Photo Diode (+) | 2      |  |
| Laser (+)       | 3      |  |



#### Package Drawings

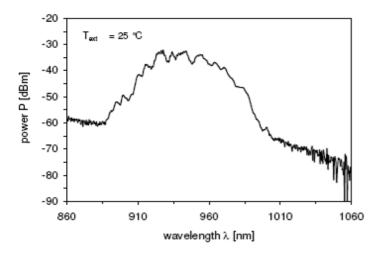






GaAs Semiconductor Laser Diode Tunable Fabry-Perot Laser for External Cavity Operation

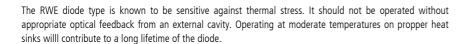



PRELIMINARY SPECIFICATION

#### **RWE Laser**

### EYP-RWE-0980-08020-1500-SOT02-0000

#### **Typical Measurement Results**


Emission Spectrum measured without external feedback



Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

#### Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.



The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase thread to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

















## EYP-RWE-1060-10020-1500-SOT02-0000



Revision 1.00

# **GAIN CHIPS AR coated Fabry-Perot Laser**



info@amstechnologies.com www.amstechnologies-webshop.com



#### **General Product Information**

| Product                                          | Application             |
|--------------------------------------------------|-------------------------|
| tunable 1060 nm Fabry-Perot Laser                | Spectroscopy            |
| for use in an External Cavity Diode Laser (ECDL) | covering wavelengths    |
| sealed SOT Housing                               | between 980 and 1090 nm |
| Monitor Diode                                    |                         |



#### **Absolute Maximum Ratings**

| Parameter                       | Symbol         | Unit | min | typ | max |
|---------------------------------|----------------|------|-----|-----|-----|
| Storage Temperature             | $T_S$          | °C   | -40 |     | 85  |
| Operational Temperature at Case | $T_{C}$        | °C   | -20 |     | 50  |
| Forward Current                 | I <sub>F</sub> | mA   |     |     | 220 |
| Reverse Voltage                 | $V_R$          | V    |     |     | 0   |
| Output Power (extracavity)      | $P_{opt}$      | mW   |     |     | 120 |

#### Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum
Ratings can cause permanent damage to the device.
Please note that a damaging optical power level may
occur although the maximum current is not reached.

#### Recommended Operational Conditions

| Parameter                       | Symbol         | Unit | min | typ | max |
|---------------------------------|----------------|------|-----|-----|-----|
| Operational Temperature at Case | T <sub>C</sub> | °C   | 15  |     | 40  |
| Forward Current                 | I <sub>F</sub> | mA   |     |     | 200 |
| Output Power (extracavity)      | $P_{opt}$      | mW   |     |     | 100 |

| Measurement      | Conditions / | Comments |
|------------------|--------------|----------|
| IVICasul CITICIT | Conditions / | Comments |

#### Characteristics at 25° C at Begin Of Life

| Parameter                                    | Symbol                        | Unit | min | typ                | max                |
|----------------------------------------------|-------------------------------|------|-----|--------------------|--------------------|
| Center Wavelength                            | $\lambda_{C}$                 | nm   |     | 1060               |                    |
| Tuning Range                                 | $\Delta \lambda_{\text{tun}}$ | nm   | 980 |                    | 1090               |
| Output Power (extracavity)                   | $P_{opt}$                     | mW   |     | 80                 |                    |
| Cavity Length                                | L                             | μm   |     | 1500               |                    |
| Reflectivity at Front Facet                  | $R_{ff}$                      |      |     | 3·10 <sup>-4</sup> | 1·10 <sup>-3</sup> |
| Polarization                                 |                               |      |     | TE                 |                    |
| Spatial Mode (transversal) TEM <sub>00</sub> |                               |      |     |                    |                    |
| Spectral Mode (longitudinal)                 |                               |      | Sin | ıgle/Multi Mo      | ode                |
| Divergence parallel (FWHM)                   | $\Theta_{  }$                 | 0    |     | 10                 |                    |
| Divergence perpendicular (FWHM)              | $\Theta_{\perp}$              | 0    |     | 24                 |                    |
|                                              |                               |      |     |                    |                    |

#### Measurement Conditions / Comments

Tuning range and output power are estimated from the gain profile of the laser. The actual achieved wavelength and power are strongly influenced by the external cavity. Therefore eagleyard Photonics will give no guarantee on these parameters.

E field parallel to Pin 2 - Pin 3 - plane
Fundamental Mode
depending on operating conditions
parallel to Pin 2 - Pin 3 plane (see p. 3)
perpendicular to Pin 2 - Pin 3 plane (see p. 3)

# EYP-RWE-1060-10020-1500-SOT02-0000



Revision 1.00

# **GAIN CHIPS AR coated Fabry-Perot Laser**



### Monitor Diode

| Parameter                                                 | Symbol                              | Unit    | min | typ | max |
|-----------------------------------------------------------|-------------------------------------|---------|-----|-----|-----|
| Monitor Detector Responsivity ( $U_{RMD} = 5 \text{ V}$ ) | I <sub>mon</sub> / P <sub>opt</sub> | μA / mW |     | 20  |     |

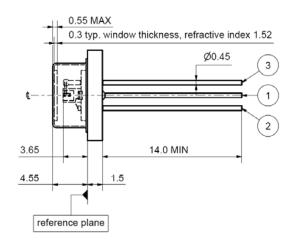
Measurement Conditions / Comments
depends on the intracavity power of the ECDL setup

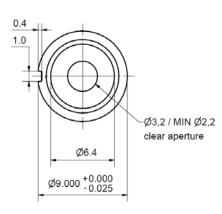
#### **Package Dimensions**

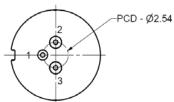
| Parameter                       | Symbol           | Unit | min  | typ  | max  |
|---------------------------------|------------------|------|------|------|------|
| Height of Emission Plane        | $d_{EP}$         | mm   | 3.50 | 3.65 | 3.70 |
| Excentricity of Emission Center | R                | mm   |      |      | 0.12 |
| Pin Length                      | I <sub>PIN</sub> | mm   |      | 14   |      |

Measurement Conditions / Comments
reference plane: top side of TO header
reference: center of outer diameter of header

#### Package Pinout


|  |  | 2 |
|--|--|---|


Laser Diode Cathode, Monitor Diode Cathode, Case
 Photo Diode Anode
 Laser Diode Anode






#### **Package Drawings**

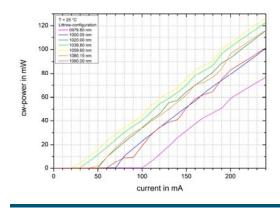


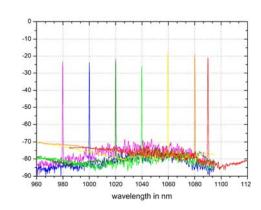




pt power [a.u.

## EYP-RWE-1060-10020-1500-SOT02-0000





Revision 1.00

# **GAIN CHIPS**AR coated Fabry-Perot Laser



### Typical Measurement Results ex cavity





#### Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The RWE diode type is known to be sensitive against thermal stress. It should not be operated without appropriate optical feedback from an external cavity. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.















## EYP-RWE-1060-10525-1500-SOT02-0000



Revision 1.00

# **GAIN CHIPS AR coated Fabry-Perot Laser**



info@amstechnologies.com www.amstechnologies-webshop.com



#### **General Product Information**

| Product                                           | Application             |
|---------------------------------------------------|-------------------------|
| widely tunable 1060 nm modified Fabry-Perot Laser | Spectroscopy            |
| for use in an External Cavity Diode Laser (ECDL)  | covering wavelengths    |
| sealed SOT Housing                                | between 960 and 1100 nm |
| Monitor Diode                                     |                         |



#### Absolute Maximum Ratings

| Parameter                       | Symbol         | Unit | min | typ | max |
|---------------------------------|----------------|------|-----|-----|-----|
| Storage Temperature             | $T_S$          | °C   | -40 |     | 85  |
| Operational Temperature at Case | $T_{C}$        | °C   | -20 |     | 50  |
| Forward Current                 | I <sub>F</sub> | mA   |     |     | 220 |
| Reverse Voltage                 | $V_R$          | V    |     |     | 0   |
| Output Power (extracavity)      | $P_{opt}$      | mW   |     |     | 120 |

#### Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum
Ratings can cause permanent damage to the device.
Please note that a damaging optical power level may
occur although the maximum current is not reached.

#### Recommended Operational Conditions

| Parameter                       | Symbol         | Unit | min | typ | max |
|---------------------------------|----------------|------|-----|-----|-----|
| Operational Temperature at Case | T <sub>C</sub> | °C   | 15  |     | 40  |
| Forward Current                 | I <sub>F</sub> | mA   |     |     | 200 |
| Output Power (extracavity)      | $P_{opt}$      | mW   |     |     | 100 |

| Measurement Conditions / | Comments |
|--------------------------|----------|
|                          |          |

#### Characteristics at 25° C at Begin Of Life

| Parameter                                    | Symbol                 | Unit | min | typ                | max    |
|----------------------------------------------|------------------------|------|-----|--------------------|--------|
| Center Wavelength                            | $\lambda_{C}$          | nm   |     | 1060               |        |
| Tuning Range                                 | $\Delta \lambda_{tun}$ | nm   | 960 |                    | 1100   |
| Output Power (extracavity)                   | $P_{opt}$              | mW   |     | 80                 |        |
| Cavity Length                                | L                      | μm   |     | 1500               |        |
| Reflectivity at Front Facet                  | $R_{ff}$               |      |     | 3·10 <sup>-4</sup> | 1.10-3 |
| Polarization                                 |                        |      |     | TE                 |        |
| Spatial Mode (transversal) TEM <sub>00</sub> |                        |      |     |                    |        |
| Spectral Mode (longitudinal)                 |                        |      | Sin | ıgle/Multi Mo      | ode    |
| Divergence parallel (FWHM)                   | $\Theta_{  }$          | 0    |     | 10                 |        |
| Divergence perpendicular (FWHM)              | $\Theta_{\perp}$       | 0    |     | 24                 |        |
|                                              |                        |      |     |                    |        |

#### Measurement Conditions / Comments

Tuning range and output power are estimated from the gain profile of the laser. The actual achieved wavelength and power are strongly influenced by the external cavity. Therefore eagleyard Photonics will give no guarantee on these parameters.

E field parallel to Pin 2 - Pin 3 - plane
Fundamental Mode
depending on operating conditions
parallel to Pin 2 - Pin 3 plane (see p. 3)
perpendicular to Pin 2 - Pin 3 plane (see p. 3)

# EYP-RWE-1060-10525-1500-SOT02-0000



Revision 1.00

# **GAIN CHIPS AR coated Fabry-Perot Laser**



| N. | 7or | nito | r D | iod |  |
|----|-----|------|-----|-----|--|
|    |     |      |     |     |  |

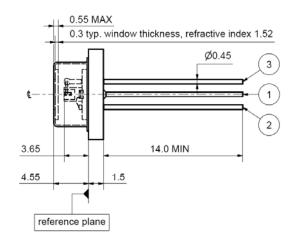
| Parameter                                          | Symbol                              | Unit    | min | typ | max |
|----------------------------------------------------|-------------------------------------|---------|-----|-----|-----|
| Monitor Detector Responsivity ( $U_{R MD} = 5 V$ ) | I <sub>mon</sub> / P <sub>opt</sub> | μA / mW |     | 20  |     |

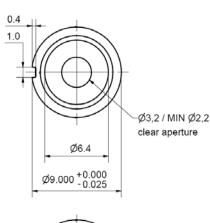
| Measurement Conditions / Comments                  |
|----------------------------------------------------|
| depends on the intracavity power of the ECDL setup |

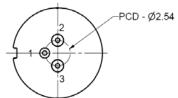
#### **Package Dimensions**

| Parameter                       | Symbol           | Unit | min  | typ  | max  |
|---------------------------------|------------------|------|------|------|------|
| Height of Emission Plane        | $d_{EP}$         | mm   | 3.50 | 3.65 | 3.70 |
| Excentricity of Emission Center | R                | mm   |      |      | 0.12 |
| Pin Length                      | I <sub>PIN</sub> | mm   |      | 14   |      |

| Measurement Conditions / Comments             |
|-----------------------------------------------|
| reference plane: top side of TO header        |
| reference: center of outer diameter of header |
|                                               |


#### Package Pinout


- Laser Diode Cathode, Monitor Diode Cathode, Case
   Photo Diode Anode
- 2 Photo Diode Anode3 Laser Diode Anode





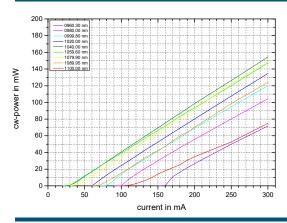

#### Package Drawings

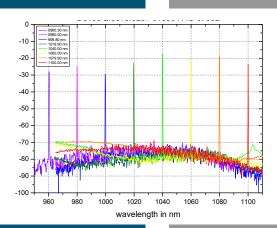






## EYP-RWE-1060-10525-1500-SOT02-0000





Revision 1.00

# **GAIN CHIPS AR coated Fabry-Perot Laser**



#### Typical Measurement Results ex cavity





#### Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The RWE diode type is known to be sensitive against thermal stress. It should not be operated without appropriate optical feedback from an external cavity. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.













